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What is 
vector 

semantics?

• A form of representation learning based 
on the notion that similar words tend to 
occur in similar environments

• Representations learned in this manner are 
typically referred to as word embeddings
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Representation Learning

• The process of automatically learning 
useful representations of input text, in a 
self-supervised manner

• Recent trends have moved toward 
representation learning and away from 
creating representations by hand (i.e., by 
feature engineering)

Feature 
Engineering

Representation 
Learning
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The corresponding 
notion of encoding 

words based on 
their distribution is 

referred to as the 
distributional 

hypothesis.

• First formulated by 
linguists in the 1950s

• Joos (1950)
• Harris (1954)
• Firth (1957)
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Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.
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Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.

1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1
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There are many 
ways to make 
use of the 
distributional 
hypothesis!

• Classical word vectors
• Bag of words representations

• Non-contextual word embeddings
• Word2Vec
• GloVe

• Contextual word embeddings
• ELMo
• BERT
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There are many 
ways to make 
use of the 
distributional 
hypothesis!

• Classical word vectors
• Bag of words representations

• Non-contextual word embeddings
• Word2Vec
• GloVe

• Contextual word embeddings
• ELMo
• BERT

This week

Later this semester
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A brief foray 
into lexical 
semantics….

• Key linguistics concepts and terminology 
(and useful properties of words):

• Lemmas and senses
• Synonymy
• Word similarity
• Word relatedness
• Frames and roles
• Connotation
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Lemmas 
and 
Senses

• Lemma: The base form of a word
• Papers → paper
• Mice → mouse

• Word Sense: Different aspects of meaning for a 
word

• Mouse (1): A small rodent
• Mouse (2): A device to control a computer cursor

• Words with the same lemma should (hopefully!) 
reside near one another in vector space

• Different senses of words should be represented as 
different vectors in contextual word 
representations, but not in classic word vectors or 
non-contextual word representations

1/28/20 Natalie Parde - UIC CS 521 11



Synonymy

• When a word sense for one word is 
(nearly) identical to the word sense for 
another word

• Synonymy: Two words are synonymous if 
they are substitutable for one another in 
any sentence without changing the 
situations in which the sentence would be 
true

• This means that the words have the 
same propositional meaning

For my assignment I’m writing a scathing critique of Dr. 
Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. 
Parde’s recent paper.
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Word 
Similarity

• Words don’t often have that many 
synonyms, but they do have a lot of similar
words

• Review ≈ summary
• Good way to check if two words are similar: 

Can word Y be commonly used in the same 
context as word X?

• I’m writing a summary 🙂
• Did you submit your summary yet? 🙂
• That is a scathing summary 🤨
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Word Relatedness

• Sometimes words are related, but not similar, to one 
another

• Word Relatedness: An association between words 
based on their shared participation in an event or 
semantic field

• Semantic Field: A set of words covering a semantic 
domain

• Restaurant: {waiter, menu, plate, food, …, chef}

coffee
cup

espresso
cafe
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Semantic 
Frames

• Semantic Frame: A set of words that denote 
perspectives or participants in a particular 
type of event

• Commercial Transaction = {buyer, seller, 
goods, money}

• Semantic Role: A participant’s underlying 
role with respect to the main verb in the 
sentence

Natalie bought five cookies for $5 from Shahla.

buyer goods money seller
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Connotation
• Also referred to as affective meaning
• The aspects of a word’s meaning that are related to a writer 

or reader’s emotions, sentiment, opinions, or evaluations

• Generally three dimensions:
• Valence: Positivity

• High: Happy, satisfied
• Low: Unhappy, annoyed

• Arousal: Intensity of emotion
• High: Excited, frenzied
• Low: Relaxed, calm

• Dominance: Degree of control
• High: Important, controlling
• Low: Awed, influenced
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Connotation 
(Continued)
• Following this line of 

thought, each word 
can be represented 
by three numbers, 
corresponding to its 
value on each of the 
three affective 
dimensions

Valence Arousal Dominance

courageous 8.05 5.5 7.38

music 7.67 5.57 6.5

heartbreak 2.45 5.65 3.58

cub 6.71 3.95 4.24

life 6.68 5.59 5.89

1/28/20 Natalie Parde - UIC CS 521 17



Connotation 
(Continued)
• Following this line of 

thought, each word 
can be represented 
by three numbers, 
corresponding to its 
value on each of the 
three affective 
dimensions

Valence Arousal Dominance

courageous 8.05 5.5 7.38

music 7.67 5.57 6.5

heartbreak 2.45 5.65 3.58

cub 6.71 3.95 4.24

life 6.68 5.59 5.89

Word vector! (Osgood et al., 1957)
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How, then, 
should we 
represent 

the meaning 
of a word?

• Two classic strategies:
• Bag of words representations: A word 

is a string of letters, or an index in a 
vocabulary list

• Logical representation: A word defines 
its own meaning (“dog” = DOG)
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How, then, 
should we 
represent 

the meaning 
of a word?

• Two classic strategies:
• Bag of words representations: A word 

is a string of letters, or an index in a 
vocabulary list

• Logical representation: A word defines 
its own meaning (“dog” = DOG)
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Back to our 
discussion 
of vector 
semantics!

• Under the distributional hypothesis, we 
define a word by its environment or its 
distribution in language use

• This corresponds to the set of contexts in 
which the word occurs

• Context: Neighboring words or 
grammatical environments

• Two words with very similar sets of 
contexts (i.e., similar distributions) are 
assumed to have very similar meanings
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We do this to infer meaning 
in the real world all the time.
• Pretend you don’t know what the Cantonese word ongchoi means

• However, you read the following sentences:
• Ongchoi is delicious sautéed with garlic.
• Ongchoi is superb over rice.
• …ongchoi leaves with salty sauces…

• You’ve seen many of the other context words in these sentences 
previously:

• …spinach sautéed with garlic over rice…
• …chard stems and leaves are delicious…
• …collard greens and other salty leafy greens…

• Your (correct!) conclusion?
• Ongchoi is probably a leafy green similar to spinach, chard, or 

collard greens
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Our goal in NLP is to 
do the same thing 
computationally.

• How would we do this in the sample case 
from the previous slide?

• Count the words in the context of 
ongchoi

• See what other words occur in those 
same contexts

1/28/20 Natalie Parde - UIC CS 521 23



We can 
represent a 
word’s context 
using vectors.

• Define a word as a single vector 
point in an n-dimensional space

• For bag of words representations, 
n = vocabulary size

• Represent the presence or absence 
of words in its surrounding context 
using numeric values

• For bag of words representations, 
the value stored in a dimension n
corresponds to the presence of a 
context word c in close proximity 
to the target word w
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The goal is for 
the values in 
these vector 
representations 
to correspond 
with dimensions 
of meaning.

• Assuming this is the case, 
we should be able to:

• Cluster vectors into 
semantic groups

• Perform operations 
that are semantically 
intuitive

review
critique summary

valentine’s

holi

eid
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The goal is for 
the values in 
these vector 
representations 
to correspond 
with dimensions 
of meaning.

• Assuming this is the case, 
we should be able to:

• Cluster vectors into 
semantic groups

• Perform operations 
that are semantically 
intuitive analysis

critique

summary

+

=
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How do we build 
vector representations 
of meaning in a bag of 

words model?

critique

c1 … critique … cn

w1 … … … … …

… … … … … …

critique ? ? ? ? ?

… … … … … …

wn … … … … …
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One Approach: TF*IDF

• Term Frequency * Inverse Document Frequency
• Meaning of a word is defined by the counts of 

nearby words
• To do this, a co-occurrence matrix is needed
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Word co-occurrence matrices 
originated from term-document 
matrices for information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a 

selection

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V
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Word co-occurrence matrices 
originated from term-document 
matrices for information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a 

selection

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

“wit” appears 3 times in Henry V
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In a term-document matrix, rows could be 
viewed as word vectors.

• Each dimension 
corresponds to a 
document

• Words with similar 
vectors occur in similar 
documents

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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In a term-document matrix, rows could be 
viewed as word vectors.

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Julius Caesar

H
en

ry
 V

battle [7, 13]

good [62, 89]

fool [1, 4]
wit [2, 3]

1/28/20 Natalie Parde - UIC CS 521 32



Different 
Types of 
Context

• Documents aren’t the most common type of 
context used to represent meaning in word 
vectors

• More common: word context
• Referred to as a term-term matrix, word-word 

matrix, or term-context matrix
• In a word-word matrix, the columns are also 

labeled by words
• Thus, dimensionality is |V| x |V|
• Each cell records the number of times the 

row (target) word and the column (context) 
word co-occur in some context in a training 
corpus
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How can you decide 
if two words occur 

in the same 
context?

• Common context windows:
• Entire document

• Cell value = # times the 
words co-occur in the 
same document

• Predetermined span 
surrounding the target

• Cell value = # times the 
words co-occur in this 
span of words
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Example Context Window (Size = 4)

• Take each occurrence of a word (e.g., strawberry)
• Count the context words in the four-word spans before and after it 

to get a word-word co-occurrence matrix

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet
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Example Context 
Window (Size = 4)

• A simplified subset of a word-
word co-occurrence matrix 
could appear as follows, given a 
sufficient corpus

aard vark … co mp u te r da ta resu l t p ie su g ar …

cherry 0 … 2 8 9 442 25 …

strawberry 0 … 0 0 1 60 19 …

digital 0 … 1670 1683 85 5 4 …

information 0 … 3325 3982 378 5 13 …

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet Vector for 
“strawberry”
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So far, our co-
occurrence 
matrices have 
contained raw 
frequency 
counts of 
word co-
occurrences.

• However, this isn’t the best measure of 
association between words

• Some words co-occur frequently with 
many words, so won’t be very informative

• the, it, they
• We want to know about words that co-

occur frequently with one another, but 
less frequently across all texts
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This is 
where 

TF*IDF 
comes in 

handy!

• TF*IDF
• Term Frequency * Inverse Document 

Frequency
• Term Frequency: The frequency of the 

word t in the document d
• 𝑡𝑓&,( = count(𝑡, 𝑑)

• Document Frequency: The number of 
documents in which the word t occurs

• Different from collection frequency (the 
number of times the word occurs in the 
entire collection of documents)
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Computing 
TF*IDF

• Inverse Document Frequency: The inverse of 
document frequency, where N is the total number of 
documents in the collection

• 𝑖𝑑𝑓& =
2
(34

• IDF is higher when the term occurs in fewer 
documents

• What is a document?
• Individual instance in your corpus (e.g., book, 

play, sentence, etc.)
• It is often useful to perform these computations in log 

space
• TF: log78(𝑡𝑓&,(+1)
• IDF: log78 𝑖𝑑𝑓&
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Computing 
TF*IDF

• TF*IDF is then simply the combination of TF 
and IDF

• 𝑡𝑓𝑖𝑑𝑓&,( = 𝑡𝑓&,(×𝑖𝑑𝑓&
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Example: 
Computing 

TF*IDF
• TF*IDF(battle, d1) = ?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF*IDF
• TF*IDF(battle, d1) = ?
• TF(battle, d1) = 1

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF*IDF
• TF*IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 

37/21 = 1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

word df
battle 21
good 37
fool 36
wit 34Document frequencies from 

37-document corpus
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Example: 
Computing 

TF*IDF
• TF*IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76

• TF*IDF(battle, d1) = 1 * 1.76 = 
1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF*IDF
• TF*IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76
• TF*IDF(battle, d1) = 1 * 1.76 = 

1.76
• Alternately, TF*IDF(battle, d1) = 
𝒍𝒐𝒈𝟏𝟎(𝟏 + 𝟏) ∗ 𝒍𝒐𝒈𝟏𝟎 𝟏. 𝟕𝟔 =
0.074

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF*IDF
• TF*IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76

• TF*IDF(battle, d1) = 1 * 1.76 = 
1.76

• Alternately, TF*IDF(battle, d1) = 
𝑙𝑜𝑔78(1 + 1) ∗ 𝑙𝑜𝑔78 1.76 = 0.074

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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To convert our 
entire word co-
occurrence 
matrix to a 
TF*IDF matrix, 
we need to 
repeat this 
calculation for 
each element.

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022
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How does the TF*IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022
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How does the TF*IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Occurs in every document …not important in the overall scheme of things!
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How does the TF*IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Increases the importance of rarer words like “battle”
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Note that the 
TF*IDF model 
produces a sparse 
vector.
• Sparse: Many 

(usually most) cells 
have values of 0

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

1/28/20 Natalie Parde - UIC CS 521 51



Note that the 
TF*IDF model 
produces a sparse 
vector.
• Sparse: Many 

(usually most) cells 
have values of 0

d1 d2 d3 d4 d5 d6 d7

battle 0.1 0.0 0.0 0.0 0.2 0.0 0.3

good 0.0 0.0 0.0 0.0 0.0 0.0 0.0

fool 0.0 0.0 0.0 0.0 0.0 0.0 0.0

wit 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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This can be 
problematic!

• However, TF*IDF remains a useful starting 
point for vector space models

• Generally combined with standard machine 
learning algorithms

• Logistic Regression
• Naïve Bayes
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Now that we know how to create a vector space model, how 
can we use it to compute similarity between words?

• Cosine similarity
• Based on the dot product (also called inner 

product) from linear algebra
• dot product v, w = v N w =
∑PQ72 𝑣P𝑤P = 𝑣7𝑤7 + 𝑣T𝑤T + ⋯+ 𝑣2𝑤2

• Similar vectors (those with large values in the same 
dimensions) will have high values; dissimilar 
vectors (those with zeros in different dimensions) 
will have low values
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Why don’t 
we just use 
the dot 
product?

• More frequent words tend to co-occur with 
more words and have higher co-occurrence 
values with each of them

• Thus, the raw dot product will be higher 
for frequent words

• This isn’t good! ☹
• We want our similarity metric to tell us 

how similar two words are regardless of 
frequency

• The simplest way to fix this problem is to 
normalize for the vector length (divide the 
dot product by the lengths of the two vectors)
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Normalized Dot 
Product = Cosine of 
the angle between 
two vectors

• The cosine similarity metrics between two vectors v and w can thus be computed 
as:

• cosine v,w = vNw
v |w|

= ∑Z[\
] ^Z_Z

∑Z[\
] ^Z

` ∑Z[\
] _Z

`

• This value ranges between 0 (dissimilar) and 1 (similar)
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ?
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = aaT,b,T N c,debT,ddTc
aaT`fb`fT` c`fdebT`fddTc`
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = aaT∗cfb∗debTfT∗ddTc
aaT`fb`fT` c`fdebT`fddTc`
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = aaT∗cfb∗debTfT∗ddTc
aaT`fb`fT` c`fdebT`fddTc`

= 0.017
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = aaT∗cfb∗debTfT∗ddTc
aaT`fb`fT` c`fdebT`fddTc`

= 0.017

cos(digital, information) = c∗cf7hbd∗debTf7hi8∗ddTc
c`f7hbd`f7hi8` c`fdebT`fddTc`

= 0.996
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = aaT∗cfb∗debTfT∗ddTc
aaT`fb`fT` c`fdebT`fddTc`

= 0.017

cos(digital, information) = c∗cf7hbd∗debTf7hi8∗ddTc
c`f7hbd`f7hi8` c`fdebT`fddTc`

= 0.996

Result: information is way closer to digital than it is to unicorn!0101
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So, we can compute word vectors and we 
can compute the similarity between them.

• All good?
• Kind of….🤔
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Limitations of 
Classic Word 

Representation 
Strategies

• No capacity to infer deeper semantic 
content

• Can’t encode the following using a bag-of-
words vector:

• Synonyms
• Antonyms
• Positive/negative connotations
• Related contexts
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Additionally, 
remember that 
bag of words 
representations 
are sparse.

• Very high-dimensional
• Lots of empty (zero-valued) cells
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We’d 
prefer to 
have dense 
vectors.

• Lower-dimensional (~ 50-1000 cells)
• Most cells with non-zero values

• We’d also prefer to be able to encode other 
dimensions of meaning than word type 
alone

• Good should be:
• Far from bad
• Close to great
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It turns out that dense vectors are 
preferable for NLP tasks for many 
reasons!

• Easier to include as features in machine learning 
systems

• Classifiers have to learn ~100 weights instead of 
~50,000

• Fewer parameters → lower chance of overfitting
• May generalize better to new data

• Better at capturing synonymy
• Words are not distinct dimensions; instead, 

dimensions correspond to meaning components
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What is the 
best way to 

generate 
dense word 

vectors?

• The answer changes quite frequently:
• https://gluebenchmark.com/leaderboard/
• https://rajpurkar.github.io/SQuAD-

explorer/
• Current state-of-the-art models are 

bidirectional (trained to represent words 
using both their left and right context), 
contextual (produce different vectors for 
different word senses) models built using 
Transformers (a type of neural network)
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We’ll cover 
state-of-the-

art embedding 
models later 

this semester, 
when we’re 
discussing 

research 
papers.

• Next class period, we’ll cover two basic, 
essential models:

• Word2Vec:
• https://code.google.com/archive/p/word2vec/

• GloVe:
• https://nlp.stanford.edu/projects/glove/
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Summary: 
Vector 
Semantics

• Word embeddings are vector representations of 
meaning

• A vector for a word is computed based on the contexts
in which the word occurs

• Context = Documents or windows of words
• Word embeddings can be sparse or dense

• Sparse: Bag of words representations
• Dense: Word2Vec, GloVe

• Dense embeddings are generally better for NLP tasks
• TF*IDF vectors are bag of words representations that 

encode meaning based on a combination of term 
frequency and inverse document frequency

• Cosine similarity can be used to determine the 
similarity between two word vectors
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