
Vector Semantics

Natalie Parde, Ph.D.
Department of Computer Science

University of Illinois at Chicago

CS 521: Statistical Natural Language
Processing

Spring 2020

Many slides adapted from Jurafsky and Martin
(https://web.stanford.edu/~jurafsky/slp3/).

https://web.stanford.edu/~jurafsky/slp3/

What is
vector

semantics?

• A form of representation learning based
on the notion that similar words tend to
occur in similar environments

• Representations learned in this manner are
typically referred to as word embeddings

1/28/20 Natalie Parde - UIC CS 521 2

Representation Learning

• The process of automatically learning
useful representations of input text, in a
self-supervised manner

• Recent trends have moved toward
representation learning and away from
creating representations by hand (i.e., by
feature engineering)

Feature
Engineering

Representation
Learning

1/28/20 Natalie Parde - UIC CS 521 3

The corresponding
notion of encoding

words based on
their distribution is

referred to as the
distributional

hypothesis.

• First formulated by
linguists in the 1950s

• Joos (1950)
• Harris (1954)
• Firth (1957)

1/28/20 Natalie Parde - UIC CS 521 4

https://asa.scitation.org/doi/10.1121/1.1906674
https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520
http://cs.brown.edu/courses/csci2952d/readings/lecture1-firth.pdf

Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.

1/28/20 Natalie Parde - UIC CS 521 5

Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.

1/28/20 Natalie Parde - UIC CS 521 6

Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.

1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1

1/28/20 Natalie Parde - UIC CS 521 7

There are many
ways to make
use of the
distributional
hypothesis!

• Classical word vectors
• Bag of words representations

• Non-contextual word embeddings
• Word2Vec
• GloVe

• Contextual word embeddings
• ELMo
• BERT

1/28/20 Natalie Parde - UIC CS 521 8

There are many
ways to make
use of the
distributional
hypothesis!

• Classical word vectors
• Bag of words representations

• Non-contextual word embeddings
• Word2Vec
• GloVe

• Contextual word embeddings
• ELMo
• BERT

This week

Later this semester

1/28/20 Natalie Parde - UIC CS 521 9

A brief foray
into lexical
semantics….

• Key linguistics concepts and terminology
(and useful properties of words):

• Lemmas and senses
• Synonymy
• Word similarity
• Word relatedness
• Frames and roles
• Connotation

1/28/20 Natalie Parde - UIC CS 521 10

Lemmas
and
Senses

• Lemma: The base form of a word
• Papers → paper
• Mice → mouse

• Word Sense: Different aspects of meaning for a
word

• Mouse (1): A small rodent
• Mouse (2): A device to control a computer cursor

• Words with the same lemma should (hopefully!)
reside near one another in vector space

• Different senses of words should be represented as
different vectors in contextual word
representations, but not in classic word vectors or
non-contextual word representations

1/28/20 Natalie Parde - UIC CS 521 11

Synonymy

• When a word sense for one word is
(nearly) identical to the word sense for
another word

• Synonymy: Two words are synonymous if
they are substitutable for one another in
any sentence without changing the
situations in which the sentence would be
true

• This means that the words have the
same propositional meaning

For my assignment I’m writing a scathing critique of Dr.
Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr.
Parde’s recent paper.

1/28/20 Natalie Parde - UIC CS 521 12

Word
Similarity

• Words don’t often have that many
synonyms, but they do have a lot of similar
words

• Review ≈ summary
• Good way to check if two words are similar:

Can word Y be commonly used in the same
context as word X?

• I’m writing a summary 🙂
• Did you submit your summary yet? 🙂
• That is a scathing summary 🤨

1/28/20 Natalie Parde - UIC CS 521 13

Word Relatedness

• Sometimes words are related, but not similar, to one
another

• Word Relatedness: An association between words
based on their shared participation in an event or
semantic field

• Semantic Field: A set of words covering a semantic
domain

• Restaurant: {waiter, menu, plate, food, …, chef}

coffee
cup

espresso
cafe

1/28/20 Natalie Parde - UIC CS 521 14

Semantic
Frames

• Semantic Frame: A set of words that denote
perspectives or participants in a particular
type of event

• Commercial Transaction = {buyer, seller,
goods, money}

• Semantic Role: A participant’s underlying
role with respect to the main verb in the
sentence

Natalie bought five cookies for $5 from Shahla.

buyer goods money seller

1/28/20 Natalie Parde - UIC CS 521 15

Connotation
• Also referred to as affective meaning
• The aspects of a word’s meaning that are related to a writer

or reader’s emotions, sentiment, opinions, or evaluations

• Generally three dimensions:
• Valence: Positivity

• High: Happy, satisfied
• Low: Unhappy, annoyed

• Arousal: Intensity of emotion
• High: Excited, frenzied
• Low: Relaxed, calm

• Dominance: Degree of control
• High: Important, controlling
• Low: Awed, influenced

1/28/20 Natalie Parde - UIC CS 521 16

Connotation
(Continued)
• Following this line of

thought, each word
can be represented
by three numbers,
corresponding to its
value on each of the
three affective
dimensions

Valence Arousal Dominance

courageous 8.05 5.5 7.38

music 7.67 5.57 6.5

heartbreak 2.45 5.65 3.58

cub 6.71 3.95 4.24

life 6.68 5.59 5.89

1/28/20 Natalie Parde - UIC CS 521 17

Connotation
(Continued)
• Following this line of

thought, each word
can be represented
by three numbers,
corresponding to its
value on each of the
three affective
dimensions

Valence Arousal Dominance

courageous 8.05 5.5 7.38

music 7.67 5.57 6.5

heartbreak 2.45 5.65 3.58

cub 6.71 3.95 4.24

life 6.68 5.59 5.89

Word vector! (Osgood et al., 1957)

1/28/20 Natalie Parde - UIC CS 521 18

How, then,
should we
represent

the meaning
of a word?

• Two classic strategies:
• Bag of words representations: A word

is a string of letters, or an index in a
vocabulary list

• Logical representation: A word defines
its own meaning (“dog” = DOG)

1/28/20 Natalie Parde - UIC CS 521 19

How, then,
should we
represent

the meaning
of a word?

• Two classic strategies:
• Bag of words representations: A word

is a string of letters, or an index in a
vocabulary list

• Logical representation: A word defines
its own meaning (“dog” = DOG)

1/28/20 Natalie Parde - UIC CS 521 20

Back to our
discussion
of vector
semantics!

• Under the distributional hypothesis, we
define a word by its environment or its
distribution in language use

• This corresponds to the set of contexts in
which the word occurs

• Context: Neighboring words or
grammatical environments

• Two words with very similar sets of
contexts (i.e., similar distributions) are
assumed to have very similar meanings

1/28/20 Natalie Parde - UIC CS 521 21

We do this to infer meaning
in the real world all the time.
• Pretend you don’t know what the Cantonese word ongchoi means

• However, you read the following sentences:
• Ongchoi is delicious sautéed with garlic.
• Ongchoi is superb over rice.
• …ongchoi leaves with salty sauces…

• You’ve seen many of the other context words in these sentences
previously:

• …spinach sautéed with garlic over rice…
• …chard stems and leaves are delicious…
• …collard greens and other salty leafy greens…

• Your (correct!) conclusion?
• Ongchoi is probably a leafy green similar to spinach, chard, or

collard greens

1/28/20 Natalie Parde - UIC CS 521 22

Our goal in NLP is to
do the same thing
computationally.

• How would we do this in the sample case
from the previous slide?

• Count the words in the context of
ongchoi

• See what other words occur in those
same contexts

1/28/20 Natalie Parde - UIC CS 521 23

We can
represent a
word’s context
using vectors.

• Define a word as a single vector
point in an n-dimensional space

• For bag of words representations,
n = vocabulary size

• Represent the presence or absence
of words in its surrounding context
using numeric values

• For bag of words representations,
the value stored in a dimension n
corresponds to the presence of a
context word c in close proximity
to the target word w

1/28/20 Natalie Parde - UIC CS 521 24

The goal is for
the values in
these vector
representations
to correspond
with dimensions
of meaning.

• Assuming this is the case,
we should be able to:

• Cluster vectors into
semantic groups

• Perform operations
that are semantically
intuitive

review
critique summary

valentine’s

holi

eid

1/28/20 Natalie Parde - UIC CS 521 25

The goal is for
the values in
these vector
representations
to correspond
with dimensions
of meaning.

• Assuming this is the case,
we should be able to:

• Cluster vectors into
semantic groups

• Perform operations
that are semantically
intuitive analysis

critique

summary

+

=

1/28/20 Natalie Parde - UIC CS 521 26

How do we build
vector representations
of meaning in a bag of

words model?

critique

c1 … critique … cn

w1 … … … … …

… … … … … …

critique ? ? ? ? ?

… … … … … …

wn … … … … …

1/28/20 Natalie Parde - UIC CS 521 27

One Approach: TF*IDF

• Term Frequency * Inverse Document Frequency
• Meaning of a word is defined by the counts of

nearby words
• To do this, a co-occurrence matrix is needed

1/28/20 Natalie Parde - UIC CS 521 28

Word co-occurrence matrices
originated from term-document
matrices for information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a

selection

As You
Like It

Twelfth
Night

Julius
Caesar Henry V

1/28/20 Natalie Parde - UIC CS 521 29

Word co-occurrence matrices
originated from term-document
matrices for information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a

selection

As You
Like It

Twelfth
Night

Julius
Caesar Henry V

As You
Like It

Twelfth
Night

Julius
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

“wit” appears 3 times in Henry V
1/28/20 Natalie Parde - UIC CS 521 30

In a term-document matrix, rows could be
viewed as word vectors.

• Each dimension
corresponds to a
document

• Words with similar
vectors occur in similar
documents

As You
Like It

Twelfth
Night

Julius
Caesar

Henry
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

1/28/20 Natalie Parde - UIC CS 521 31

In a term-document matrix, rows could be
viewed as word vectors.

As You
Like It

Twelfth
Night

Julius
Caesar

Henry
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Julius Caesar

H
en

ry
 V

battle [7, 13]

good [62, 89]

fool [1, 4]
wit [2, 3]

1/28/20 Natalie Parde - UIC CS 521 32

Different
Types of
Context

• Documents aren’t the most common type of
context used to represent meaning in word
vectors

• More common: word context
• Referred to as a term-term matrix, word-word

matrix, or term-context matrix
• In a word-word matrix, the columns are also

labeled by words
• Thus, dimensionality is |V| x |V|
• Each cell records the number of times the

row (target) word and the column (context)
word co-occur in some context in a training
corpus

1/28/20 Natalie Parde - UIC CS 521 33

How can you decide
if two words occur

in the same
context?

• Common context windows:
• Entire document

• Cell value = # times the
words co-occur in the
same document

• Predetermined span
surrounding the target

• Cell value = # times the
words co-occur in this
span of words

1/28/20 Natalie Parde - UIC CS 521 34

Example Context Window (Size = 4)

• Take each occurrence of a word (e.g., strawberry)
• Count the context words in the four-word spans before and after it

to get a word-word co-occurrence matrix

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

1/28/20 Natalie Parde - UIC CS 521 35

Example Context
Window (Size = 4)

• A simplified subset of a word-
word co-occurrence matrix
could appear as follows, given a
sufficient corpus

aard vark … co mp u te r da ta resu l t p ie su g ar …

cherry 0 … 2 8 9 442 25 …

strawberry 0 … 0 0 1 60 19 …

digital 0 … 1670 1683 85 5 4 …

information 0 … 3325 3982 378 5 13 …

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet Vector for
“strawberry”

1/28/20 Natalie Parde - UIC CS 521 36

So far, our co-
occurrence
matrices have
contained raw
frequency
counts of
word co-
occurrences.

• However, this isn’t the best measure of
association between words

• Some words co-occur frequently with
many words, so won’t be very informative

• the, it, they
• We want to know about words that co-

occur frequently with one another, but
less frequently across all texts

1/28/20 Natalie Parde - UIC CS 521 37

This is
where

TF*IDF
comes in

handy!

• TF*IDF
• Term Frequency * Inverse Document

Frequency
• Term Frequency: The frequency of the

word t in the document d
• 𝑡𝑓&,(= count(𝑡, 𝑑)

• Document Frequency: The number of
documents in which the word t occurs

• Different from collection frequency (the
number of times the word occurs in the
entire collection of documents)

1/28/20 Natalie Parde - UIC CS 521 38

Computing
TF*IDF

• Inverse Document Frequency: The inverse of
document frequency, where N is the total number of
documents in the collection

• 𝑖𝑑𝑓& =
2
(34

• IDF is higher when the term occurs in fewer
documents

• What is a document?
• Individual instance in your corpus (e.g., book,

play, sentence, etc.)
• It is often useful to perform these computations in log

space
• TF: log78(𝑡𝑓&,(+1)
• IDF: log78 𝑖𝑑𝑓&

1/28/20 Natalie Parde - UIC CS 521 39

Computing
TF*IDF

• TF*IDF is then simply the combination of TF
and IDF

• 𝑡𝑓𝑖𝑑𝑓&,(= 𝑡𝑓&,(×𝑖𝑑𝑓&

1/28/20 Natalie Parde - UIC CS 521 40

Example:
Computing

TF*IDF
• TF*IDF(battle, d1) = ?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

1/28/20 Natalie Parde - UIC CS 521 41

Example:
Computing

TF*IDF
• TF*IDF(battle, d1) = ?
• TF(battle, d1) = 1

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

1/28/20 Natalie Parde - UIC CS 521 42

Example:
Computing

TF*IDF
• TF*IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) =

37/21 = 1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

word df
battle 21
good 37
fool 36
wit 34Document frequencies from

37-document corpus

1/28/20 Natalie Parde - UIC CS 521 43

Example:
Computing

TF*IDF
• TF*IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21

= 1.76

• TF*IDF(battle, d1) = 1 * 1.76 =
1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

1/28/20 Natalie Parde - UIC CS 521 44

Example:
Computing

TF*IDF
• TF*IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21

= 1.76
• TF*IDF(battle, d1) = 1 * 1.76 =

1.76
• Alternately, TF*IDF(battle, d1) =
𝒍𝒐𝒈𝟏𝟎(𝟏 + 𝟏) ∗ 𝒍𝒐𝒈𝟏𝟎 𝟏. 𝟕𝟔 =
0.074

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

1/28/20 Natalie Parde - UIC CS 521 45

Example:
Computing

TF*IDF
• TF*IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21

= 1.76

• TF*IDF(battle, d1) = 1 * 1.76 =
1.76

• Alternately, TF*IDF(battle, d1) =
𝑙𝑜𝑔78(1 + 1) ∗ 𝑙𝑜𝑔78 1.76 = 0.074

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

1/28/20 Natalie Parde - UIC CS 521 46

To convert our
entire word co-
occurrence
matrix to a
TF*IDF matrix,
we need to
repeat this
calculation for
each element.

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

1/28/20 Natalie Parde - UIC CS 521 47

How does the TF*IDF matrix compare
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

1/28/20 Natalie Parde - UIC CS 521 48

How does the TF*IDF matrix compare
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Occurs in every document …not important in the overall scheme of things!
1/28/20 Natalie Parde - UIC CS 521 49

How does the TF*IDF matrix compare
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Increases the importance of rarer words like “battle”
1/28/20 Natalie Parde - UIC CS 521 50

Note that the
TF*IDF model
produces a sparse
vector.
• Sparse: Many

(usually most) cells
have values of 0

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

1/28/20 Natalie Parde - UIC CS 521 51

Note that the
TF*IDF model
produces a sparse
vector.
• Sparse: Many

(usually most) cells
have values of 0

d1 d2 d3 d4 d5 d6 d7

battle 0.1 0.0 0.0 0.0 0.2 0.0 0.3

good 0.0 0.0 0.0 0.0 0.0 0.0 0.0

fool 0.0 0.0 0.0 0.0 0.0 0.0 0.0

wit 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1/28/20 Natalie Parde - UIC CS 521 52

This can be
problematic!

• However, TF*IDF remains a useful starting
point for vector space models

• Generally combined with standard machine
learning algorithms

• Logistic Regression
• Naïve Bayes

1/28/20 Natalie Parde - UIC CS 521 53

Now that we know how to create a vector space model, how
can we use it to compute similarity between words?

• Cosine similarity
• Based on the dot product (also called inner

product) from linear algebra
• dot product v, w = v N w =
∑PQ72 𝑣P𝑤P = 𝑣7𝑤7 + 𝑣T𝑤T + ⋯+ 𝑣2𝑤2

• Similar vectors (those with large values in the same
dimensions) will have high values; dissimilar
vectors (those with zeros in different dimensions)
will have low values

1/28/20 Natalie Parde - UIC CS 521 54

Why don’t
we just use
the dot
product?

• More frequent words tend to co-occur with
more words and have higher co-occurrence
values with each of them

• Thus, the raw dot product will be higher
for frequent words

• This isn’t good! ☹
• We want our similarity metric to tell us

how similar two words are regardless of
frequency

• The simplest way to fix this problem is to
normalize for the vector length (divide the
dot product by the lengths of the two vectors)

1/28/20 Natalie Parde - UIC CS 521 55

Normalized Dot
Product = Cosine of
the angle between
two vectors

• The cosine similarity metrics between two vectors v and w can thus be computed
as:

• cosine v,w = vNw
v |w|

= ∑Z[\
] ^Z_Z

∑Z[\
] ^Z

` ∑Z[\
] _Z

`

• This value ranges between 0 (dissimilar) and 1 (similar)

1/28/20 Natalie Parde - UIC CS 521 56

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ?

1/28/20 Natalie Parde - UIC CS 521 57

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = aaT,b,T N c,debT,ddTc
aaT`fb`fT` c`fdebT`fddTc`

1/28/20 Natalie Parde - UIC CS 521 58

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = aaT∗cfb∗debTfT∗ddTc
aaT`fb`fT` c`fdebT`fddTc`

1/28/20 Natalie Parde - UIC CS 521 59

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = aaT∗cfb∗debTfT∗ddTc
aaT`fb`fT` c`fdebT`fddTc`

= 0.017

1/28/20 Natalie Parde - UIC CS 521 60

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = aaT∗cfb∗debTfT∗ddTc
aaT`fb`fT` c`fdebT`fddTc`

= 0.017

cos(digital, information) = c∗cf7hbd∗debTf7hi8∗ddTc
c`f7hbd`f7hi8` c`fdebT`fddTc`

= 0.996

1/28/20 Natalie Parde - UIC CS 521 61

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = aaT∗cfb∗debTfT∗ddTc
aaT`fb`fT` c`fdebT`fddTc`

= 0.017

cos(digital, information) = c∗cf7hbd∗debTf7hi8∗ddTc
c`f7hbd`f7hi8` c`fdebT`fddTc`

= 0.996

Result: information is way closer to digital than it is to unicorn!0101
1/28/20 Natalie Parde - UIC CS 521 62

So, we can compute word vectors and we
can compute the similarity between them.

• All good?
• Kind of….🤔

1/28/20 Natalie Parde - UIC CS 521 63

Limitations of
Classic Word

Representation
Strategies

• No capacity to infer deeper semantic
content

• Can’t encode the following using a bag-of-
words vector:

• Synonyms
• Antonyms
• Positive/negative connotations
• Related contexts

1/28/20 Natalie Parde - UIC CS 521 64

Additionally,
remember that
bag of words
representations
are sparse.

• Very high-dimensional
• Lots of empty (zero-valued) cells

1/28/20 Natalie Parde - UIC CS 521 65

We’d
prefer to
have dense
vectors.

• Lower-dimensional (~ 50-1000 cells)
• Most cells with non-zero values

• We’d also prefer to be able to encode other
dimensions of meaning than word type
alone

• Good should be:
• Far from bad
• Close to great

1/28/20 Natalie Parde - UIC CS 521 66

It turns out that dense vectors are
preferable for NLP tasks for many
reasons!

• Easier to include as features in machine learning
systems

• Classifiers have to learn ~100 weights instead of
~50,000

• Fewer parameters → lower chance of overfitting
• May generalize better to new data

• Better at capturing synonymy
• Words are not distinct dimensions; instead,

dimensions correspond to meaning components

1/28/20 Natalie Parde - UIC CS 521 67

What is the
best way to

generate
dense word

vectors?

• The answer changes quite frequently:
• https://gluebenchmark.com/leaderboard/
• https://rajpurkar.github.io/SQuAD-

explorer/
• Current state-of-the-art models are

bidirectional (trained to represent words
using both their left and right context),
contextual (produce different vectors for
different word senses) models built using
Transformers (a type of neural network)

1/28/20 Natalie Parde - UIC CS 521 68

https://gluebenchmark.com/leaderboard/
https://rajpurkar.github.io/SQuAD-explorer/

We’ll cover
state-of-the-

art embedding
models later

this semester,
when we’re
discussing

research
papers.

• Next class period, we’ll cover two basic,
essential models:

• Word2Vec:
• https://code.google.com/archive/p/word2vec/

• GloVe:
• https://nlp.stanford.edu/projects/glove/

1/28/20 Natalie Parde - UIC CS 521 69

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/

Summary:
Vector
Semantics

• Word embeddings are vector representations of
meaning

• A vector for a word is computed based on the contexts
in which the word occurs

• Context = Documents or windows of words
• Word embeddings can be sparse or dense

• Sparse: Bag of words representations
• Dense: Word2Vec, GloVe

• Dense embeddings are generally better for NLP tasks
• TF*IDF vectors are bag of words representations that

encode meaning based on a combination of term
frequency and inverse document frequency

• Cosine similarity can be used to determine the
similarity between two word vectors

1/28/20 Natalie Parde - UIC CS 521 70

